合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測及消化吸收特性研究(一)
> 環(huán)保非水基鉆井液界面張力、基本性能和抗污染能力——結(jié)果與討論、結(jié)論與認(rèn)識
> 咪唑類離子液體對不同煤塵潤濕性能的影響規(guī)律(下)
> 研究發(fā)現(xiàn):水解聚丙烯酰胺HPAM降低油水界面張力能力極其有限(二)
> 基于微量天平測定人血白蛋白辛酸鈉含量
> 可視化實(shí)驗(yàn)方法研究電場作用下液滴撞擊表面的動態(tài)行為(一)
> 動態(tài)測量純凈水和硅油、純凈水和乙酸乙酯液體間界面張力
> 一起和孩子做“科學(xué)小實(shí)驗(yàn)”,超有趣的科學(xué)小實(shí)驗(yàn)!
> 基于LB膜技術(shù)制備二氧化硅二維光子晶體薄膜的方法
> 大自然中有許多奧秘
推薦新聞Info
-
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(四)
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(三)
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(二)
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(一)
> 球擬假絲酵母菌合成槐糖脂類表面活性劑、降解含油廢水的表面張力(三)
> 球擬假絲酵母菌合成槐糖脂類表面活性劑、降解含油廢水的表面張力(二)
> 球擬假絲酵母菌合成槐糖脂類表面活性劑、降解含油廢水的表面張力(一)
> 碳微球及氨基化碳納米管組裝單元的有序LB膜制備與性能研究
> 過氧化氫氧化處理堿木質(zhì)素對合成表面活性劑表面張力的影響(二)
> 過氧化氫氧化處理堿木質(zhì)素對合成表面活性劑表面張力的影響(一)
溫度、截斷半徑、模擬分子數(shù)對水汽液界面特性的影響規(guī)律(一)
來源:河南化工 瀏覽 1074 次 發(fā)布時間:2024-11-28
水是許多化學(xué)反應(yīng)過程廉價的反應(yīng)溶劑,也是化工生產(chǎn)過程常用的工質(zhì)。汽液界面行為是研究水相變傳熱問題的基礎(chǔ)。目前,工程上許多有關(guān)水蒸發(fā)、水蒸氣冷凝、加熱干燥等相變傳熱數(shù)據(jù)仍主要依賴于實(shí)驗(yàn)。隨著分子模擬技術(shù)的發(fā)展,采用分子動力學(xué)模擬方法,從分子水平揭示水汽液界面特性的研究,引起了國內(nèi)外許多學(xué)者的極大關(guān)注。本文擬采用SPC模型,對水汽液界面特性進(jìn)行平衡分子動力學(xué)模擬研究,探討溫度、截斷半徑、模擬分子數(shù)對水汽液界面特性的影響規(guī)律。
1模擬方法
1.1模擬體系的建立
采用直角坐標(biāo)系,模擬盒子如圖1所示,液相位于模擬盒子的中央,汽相分別處于液相的上下兩側(cè),整個模擬體系中有兩個汽液界面。模擬盒子在x、y方向的長度為Lx=Ly=L,在z方向的長度為Lz=3L。
圖1模擬盒子的示意圖
對于水的分子動力學(xué)模擬研究,采用的勢能模型有很多,如SPC、SPC/E、TIP3P、TIP4P、TIP5P等。本文采用SPC剛體勢能模型,假設(shè)只有不同水分子的O原子之間存在短程L-J勢能,不同水分子的H原子之間以及H原子和O原子之間存在長程靜電勢能。水分子的總勢能由短程L-J勢能和長程靜電勢能兩部分組成,如式(1)所示。SPC模型的勢能參數(shù)如表1所示,其中qH和qO分別為水分子中H原子和O原子所帶電荷,rOH為H原子與O原子之間的鍵長,θ為兩個O—H鍵之間的角度(即鍵角),σO為O原子之間L-J勢能的尺度參數(shù),εO為O原子之間L-J勢能的能量參數(shù),e為基本電荷(1e=1.6×10-19C),kB為Boltzmann常數(shù)(kB=1.3806×10-23J/K)。
表1 SPC模型的參數(shù)值
式中:US為總勢能,kJ/mol;為長程靜電勢能,kJ/mol;為短程L-J勢能,kJ/mol;N為模擬分子個數(shù);n為每個水分子內(nèi)受靜電作用的作用點(diǎn)數(shù)量;i、j為模擬系統(tǒng)內(nèi)2個不同的水分子;a、b為分子受靜電作用的作用點(diǎn);為i分子中a作用點(diǎn)所帶電量,C;為j分子中b作用點(diǎn)所帶電量,C;為i分子中a作用點(diǎn)與j分子中b作用點(diǎn)之間的距離,m;εR為真空中介電常數(shù),εR=8.854×10-12F/m;i分子和j分子兩個O原子之間的距離,m;σO為O原子之間L-J勢能的尺度參數(shù),m;εO為O原子之間L-J勢能的能量參數(shù),kJ/mol。
對于長程靜電勢能,采用作用場法。為避免L-J勢能和靜電勢能在邊界處發(fā)生截斷而不連續(xù),導(dǎo)致Hamiltonian函數(shù)不守恒問題。采用移位法來處理兩種勢能,如方程(2)和(3)所示。
式中:rc為截斷半徑,m;U為校正后的勢能,kJ/mol;Uc為截斷半徑處的勢能,kJ/mol;εS為環(huán)境介電常數(shù),通常取εS=∞,因此,式(3)可以簡化為方程(4)。
1.2模擬細(xì)節(jié)
初始時刻,水分子初始位置為各分子的質(zhì)心以面心立方晶格(FCC)均勻排列在邊長為L的液相模擬盒中,液相區(qū)上下兩側(cè)的汽相區(qū)為真空。水分子質(zhì)心(即O原子所在位置)為分子坐標(biāo)的原點(diǎn),H和O原子均在xy平面上,其中一個H原子位于x軸的正方向上,另一個H原子位于xy平面的第二象限區(qū),O和H的位置矢量分別為rO(0,0,0),rH(0.3159σO,0,0),rH(-0.1053σO,0.2978σO,0)。水分子初始平動速度由隨機(jī)數(shù)發(fā)生器隨機(jī)給定,初始轉(zhuǎn)動速度為0。
在模擬過程中,對物理量進(jìn)行無量綱化處理;x、y、z三個方向均采用周期性邊界條件;保證系統(tǒng)的體積V、溫度T和模擬分子數(shù)N保持不變,采用Woodcock變標(biāo)度恒溫法實(shí)現(xiàn)系統(tǒng)恒溫;不斷對體系質(zhì)心進(jìn)行矯正,使之處于坐標(biāo)原點(diǎn);將模擬盒子沿z方向劃分為300個等厚度的薄片;模擬時間步長為0.8fs,總模擬步數(shù)為60萬步,其中前20萬步用于使系統(tǒng)達(dá)到平衡,后40萬步用于統(tǒng)計界面特性參數(shù)。
模擬計算程序是由本課題組采用Fortran語言編寫的,其模擬流程如圖2所示。模擬運(yùn)算中所涉及到的方程如式(5)~(13)所示]。
圖2模擬流程簡圖
式中:U(k)為第k個切片的勢能,Uij(k)為i、j分子在第k個切片內(nèi)的勢能,nk為第k個切片的分子數(shù),Vs1為切片的體積,ρ(k)為第k個切片的數(shù)密度,rij為i分子和j分子之間的距離,xij、yij、zij為rij分別在x、y、z方向上的分量,、、分別為i分子中的a原子和j分子中的b原子之間的距離在x、y、z方向上的分量,U()為勢函數(shù)U()對的導(dǎo)數(shù),PN(k)、PT(k)分別為第k個切片的法向應(yīng)力和切向應(yīng)力,γ(k)為第k個切片的局部界面張力,Δz為切片厚度,γ為汽液界面張力,〈〉為系統(tǒng)統(tǒng)計平均,ρV、ρL分別為汽相主體、液相主體密度,NL、NV分別為液相、汽相切片數(shù),UV、UL分別為汽相主體、液相主體勢能(L-J勢能、靜電勢能、總勢能),z(k)為第k個切片的位置,z0為Gibbs汽液界面的位置,d為汽液界面厚度。在統(tǒng)計切片內(nèi)法向應(yīng)力和切向應(yīng)力時,若相互作用的原子a,b均在同一切片內(nèi),則計算全部作用;若相互作用原子只有一個原子在某一切片內(nèi),則計算一半作用。





