合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 多孔陶瓷的造孔方法|發(fā)泡劑摻量對多孔陶瓷材料性能的影響
> 仲醇聚氧乙烯醚硫酸鹽平衡和動態(tài)表面張力及應用性能研究(一)
> 過硫酸鉀、K2S2O8對壓裂液破膠性能與表面張力的影響——實驗部分
> 納米沸石咪唑酯骨架ZIF-8顆粒的油水界面張力和接觸角測定及巖心驅替實驗——摘要、材料與方法
> 動態(tài)測量純凈水和硅油、純凈水和乙酸乙酯液體間界面張力
> 免罩光水性素色面漆配方、制備方法及步驟
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規(guī)律(一)
> 農(nóng)藥霧滴霧化與在玉米植株上的沉積特性研究
> 化學學得好,杯子刷的更干凈?
> DHSO、AGE、TMHC構建陽離子有機硅表面活性劑DAT防水鎖性能(一)
推薦新聞Info
-
> 氣凝膠的合成方法及干燥方法一覽
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(二)
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(一)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(三)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(二)
> 納米熔鹽形成機理、表面張力測定及影響因素研究(一)
> ?《Nature》論文致謝欄常客:超微量天平的生物膜研究顛覆性應用
> Na2CO3溶液與模擬油反應不同時間后產(chǎn)物的界面張力、剪切黏度(二)
> Na2CO3溶液與模擬油反應不同時間后產(chǎn)物的界面張力、剪切黏度(一)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
微流控器件結構對水/水微囊形成過程、界面張力的影響規(guī)律(三)
來源:高等學校化學學報 瀏覽 946 次 發(fā)布時間:2025-02-28
2結果與討論
2.1同軸微流控器件的設計和水/水微囊的制備
為了實現(xiàn)一步法制備大小均勻、尺寸可控、壁厚可調(diào)、生物相容的水/水微囊,需要設計同軸微流控器件,如圖1(A)所示。內(nèi)相黃原膠水溶液由內(nèi)管注入微流控器件;外相海藻酸鈉水溶液,由外管注入微流控器件。內(nèi)相在外相的剪切下形成液滴,同時外相在重力作用下脫離管口生成水包水的水/水微囊,并進一步通過鈣離子交聯(lián)海藻酸鈉水凝膠網(wǎng)絡,如圖1(B)所示。由于微流控器件對內(nèi)外相的精準調(diào)控,水/水微囊在光學顯微鏡下具有清晰穩(wěn)定的核殼結構圖1(C),平均尺寸(D)為(2.83±0.09)mm圖1(D)。該方法制備水/水微囊具有器件結構簡單、操作便捷、一步法成型、微囊尺寸均一可控、核殼結構穩(wěn)定、無需后處理等優(yōu)點圖1(E)。
2.2微流控器件結構對水/水微囊成型過程的影響
為了深入研究微流控器件結構對水/水微囊成型過程的影響規(guī)律,分別制備了內(nèi)管管口內(nèi)縮、內(nèi)外管管口平齊、內(nèi)管管口伸出、內(nèi)管管口內(nèi)縮外管管口不拉伸等4種同軸微流控器件,并通過系統(tǒng)改變內(nèi)相和外相流速,判斷水/水微囊的成型情況,最終確定水/水微囊的制備相圖,分別如圖2(A)——(D)所示。水/水微囊形成的關鍵是內(nèi)相在外相的剪切下形成液滴,同時外相在重力作用下脫離管口生成水/水微囊。由于內(nèi)外相均是水溶液,內(nèi)相/外相界面張力較小,并且流體黏度較大,內(nèi)相不容易在外相的剪切下形成液滴,進而被外相包裹形成水/水微囊,因此外相流速增大,對內(nèi)相剪切加強,更易形成水/水微囊。
此外,內(nèi)管管口內(nèi)縮和外管管口拉伸,有利于外相在外管管口處通過流動聚焦剪切內(nèi)相,因此內(nèi)管管口內(nèi)縮和外管管口拉伸的同軸微流控器件制備水/水微囊內(nèi)核居中,壁厚均勻,且具有較好的穩(wěn)定性和較大的制備區(qū)間。當外管管口不拉伸時,外相對內(nèi)相的剪切作用減弱,其水/水微囊的制備區(qū)間變窄,且在較大流速區(qū)間內(nèi),只能得到變形的水/水微囊,如圖2(D)所示。通過實驗觀察,若無特別說明,后續(xù)均采用內(nèi)管管口內(nèi)縮和外管管口拉伸的同軸微流控器件制備水/水微囊。
2.3內(nèi)相/外相流速對水/水微囊直徑和壁厚的影響
微流控技術的優(yōu)點在于對內(nèi)相/外相流速及其乳化過程的精準控制。因此可以調(diào)節(jié)內(nèi)相/外相的流速,研究其對水/水微囊直徑和壁厚的影響,如圖3(A)和(B)所示。當內(nèi)相流速為40 mL/h,外相流速為20 mL/h時,水/水微囊的直徑和壁厚分別為2.92和0.06 mm,尺寸偏差小于5%,裝載率(水核體積/微囊體積)高達87%.由于水/水微囊直徑的大小主要取決于微囊從微流控器件管口脫落的過程,與外相/空氣界面張力和內(nèi)外相重力的共同作用有關,界面張力使微囊懸掛在管口,重力使微囊脫離管口,可以用邦德數(shù)Bo(重力/界面張力)描述。由于界面張力和重力均與內(nèi)相/外相流速無關,水/水微囊的直徑基本不隨內(nèi)相/外相流速變化。在水/水微囊直徑不變的情況下,其壁厚的大小主要取決于內(nèi)相與外相的比例。因此內(nèi)相流速增加或外相流速減小,都將造成水/水微囊壁厚減小。
2.4水/水微囊形成過程的數(shù)值模擬
在微流控器件中,水/水微囊的形成受內(nèi)相/外相流速、黏度、界面張力等因素影響。為了進一步驗證實驗結果和指導實驗設計,通過參照實驗流體物性參數(shù),對水/水微囊形成過程進行了數(shù)值模擬,如圖4(A)所示。隨著懸掛在管口處的液滴不斷長大,重力逐漸增大,最終克服界面張力,出現(xiàn)頸縮現(xiàn)象,液滴脫離管口,形成水/水微囊。
數(shù)值模擬與實驗結果具有較好的一致性,數(shù)值模擬內(nèi)相/外相流速對水/水微囊直徑和壁厚的影響,得出了與實驗數(shù)據(jù)一致的規(guī)律,即水/水微囊的直徑基本不隨內(nèi)相/外相流速的變化而變化,而水/水微囊壁厚隨內(nèi)相流速增加或外相流速減小都將減小,如圖4(B)和(C)所示。與實驗相比,數(shù)值模擬可以更系統(tǒng)地調(diào)節(jié)各個參數(shù),如外相/空氣界面張力、內(nèi)相/外相界面張力對微囊直徑和壁厚的影響。隨著外相/空氣界面張力的增加,水/水微囊直徑成比例增加,這是由于外相/空氣界面張力使微囊懸掛在管口,重力使微囊脫離管口,當外相/空氣界面張力增加,需要的重力相應增加,造成水/水微囊直徑增加。當內(nèi)相/外相界面張力增大時,水/水微囊直徑略有增加。
數(shù)值模擬還研究了內(nèi)相黃原膠水溶液濃度和外相海藻酸鈉水溶液濃度對水/水微囊直徑和壁厚的影響規(guī)律,如圖4(F)和(G)所示。內(nèi)相黃原膠水溶液屬于剪切變稀非牛頓流體,其黏度隨剪切速率的增大而減小,因此不同濃度的黃原膠水溶液具有相似的剪切變稀流變曲線,對水/水微囊直徑和壁厚的影響較小。外相海藻酸鈉水溶液也是一種非牛頓流體,其黏度隨濃度增大而增大。當海藻酸鈉溶度增加時,包裹內(nèi)相難度增大,水/水微囊的生成開始伴隨內(nèi)相衛(wèi)星液滴的出現(xiàn),造成微囊壁厚增加。





