合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 低界面張力起泡劑篩選
> 誘導(dǎo)期測(cè)定法研究NaCl的添加對(duì)碳酸鋰固-液界面張力等成核動(dòng)力學(xué)參數(shù)影響——過飽和度的計(jì)算
> 神奇的馬拉高尼效應(yīng)卻是真實(shí)存在的
> 基于表面張力理論分析激光熱應(yīng)力彎折區(qū)形貌的影響因素及形成原因
> 甜菜堿表面活性劑TAC制備方法及表面張力測(cè)定(一)
> 不同溫度和壓力對(duì)AOT穩(wěn)定CO2乳液的界面張力影響(一)
> 腰果酚醛樹脂嵌段聚醚破乳劑表面/界面性能、油滴破裂速率常數(shù)測(cè)定(一)
> 什么是響應(yīng)性表面活性劑,響應(yīng)性表面活性劑的種類、結(jié)構(gòu)與應(yīng)用領(lǐng)域
> 單一表面活性劑在活性劑CMT焊接中的作用機(jī)理
> 失重環(huán)境下的水滴因?yàn)橛斜砻鎻埩?huì)形成標(biāo)準(zhǔn)的圓球
推薦新聞Info
-
> 全氟庚烷端基聚丙烯酸(FPAA)合成方法及水溶液表面張力測(cè)定
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(下)
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(上)
> 不同相對(duì)兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對(duì)比(三)
> 不同相對(duì)兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對(duì)比(二)
> 不同相對(duì)兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對(duì)比(一)
> 氣凝膠的合成方法及干燥方法一覽
> 表面活性劑對(duì)?納米碳纖維CNFs在水性體系中分散性的影響(二)
> 表面活性劑對(duì)?納米碳纖維CNFs在水性體系中分散性的影響(一)
> 納米熔鹽形成機(jī)理、表面張力測(cè)定及影響因素研究(三)
液態(tài)Ag-O系表面張力和表面過剩量計(jì)算、氧氣壓力和溫度的預(yù)測(cè)模型——結(jié)果與討論
來源:過程工程學(xué)報(bào)李天骕 劉劍雄 單顯祥 李堪鵬 瀏覽 1063 次 發(fā)布時(shí)間:2024-05-28
3、結(jié)果與討論
3.1液態(tài)Ag的表面張力
根據(jù)式(7),計(jì)算了液態(tài)Ag的表面張力γAg,T,結(jié)果如圖3所示。總體上,隨著溫度的升高,γAg,T呈現(xiàn)近似線性下降的趨勢(shì)。從圖中可以看出,γAg,T的預(yù)測(cè)值與文獻(xiàn)[32-34]具有較好的一致性,但略低于文獻(xiàn)[35]。
圖3液態(tài)Ag表面張力隨溫度變化的趨勢(shì)
通過式(9)計(jì)算了液態(tài)Ag的表面過剩熵SAg(T),結(jié)果如圖4所示。根據(jù)文獻(xiàn)[36],理論上處于更高無序程度(熵)的物質(zhì)狀態(tài)在較高溫度下更為穩(wěn)定,因此,液體表面結(jié)構(gòu)在較高溫度下可能會(huì)出現(xiàn)有序-無序轉(zhuǎn)變。然而,觀察圖4可知,在臨界溫度(6612 K)以下,SAg(T)隨溫度升高逐漸減小,這表明液態(tài)Ag表面總是保持有序結(jié)構(gòu)。與此同時(shí),液態(tài)Ag表面原子堆積比率與Ag(111)晶面相同的假設(shè)也得到了支持。此外,根據(jù)式(9)可知,SAg(T)∝a1/T2+a2/T,a1和a2為系數(shù)。這與前人研究結(jié)果略有不同,文獻(xiàn)[37]基于Skapski模型推導(dǎo)得到SAg(T)∝a2/T,而文獻(xiàn)[38]則根據(jù)楊氏方程推出SAg(T)∝a1/T2。
圖4液態(tài)Ag表面過剩熵隨溫度變化的趨勢(shì)
3.2液態(tài)Ag-O系的表面張力
根據(jù)式(33),計(jì)算了1350 K下液態(tài)Ag-O系的表面張力γAg-O,并將計(jì)算結(jié)果與文獻(xiàn)數(shù)據(jù)[39-44]進(jìn)行比較,如圖5所示。觀察圖5可知,γAg-O與氧氣壓力呈負(fù)相關(guān)。在較低的氧氣壓力下,γAg-O的下降幅度比較顯著;而隨著氧氣壓力增加,γAg-O的下降幅度逐漸減小。另外,計(jì)算結(jié)果與文獻(xiàn)[39,40,44]吻合良好,但高于文獻(xiàn)[41-43]。這種差異是可以接受的,因?yàn)樗捎媚P蛢H考慮了溫度和氧氣壓力,而在實(shí)驗(yàn)過程中,系統(tǒng)的表面張力不可避免地受到雜質(zhì)的影響。
圖5 1350 K下液態(tài)Ag-O系表面張力隨氧氣壓力的變化關(guān)系
圖6研究了在不同氧氣壓力條件下,γAg-O隨溫度的變化關(guān)系。由圖可知,當(dāng)氧氣壓力低于10 kPa時(shí),γAg-O與溫度呈負(fù)相關(guān)。而當(dāng)氧氣壓力高于10 kPa時(shí),隨著溫度升高,γAg-O呈現(xiàn)先增大后減小的趨勢(shì),并且隨著氧氣壓力增加,這種轉(zhuǎn)變幅度增大。這是因?yàn)棣肁g-O受溫度和氧溶解度的共同影響。一方面,隨著溫度升高,液態(tài)Ag的表面張力(γAg)降低,從而導(dǎo)致γAg-O降低;另一方面,液態(tài)Ag-O系中的氧溶解度與溫度呈負(fù)相關(guān),當(dāng)溫度升高時(shí)氧溶解度下降,導(dǎo)致表面氧吸附量減少,進(jìn)而引起γAg-O增加。因此,當(dāng)溫度較低時(shí),氧溶解度成為影響γAg-O的主要因素;而在較高的溫度條件下,溫度成為主要因素。
圖6不同氧氣壓力下液態(tài)Ag-O系表面張力隨溫度的變化關(guān)系
3.3液態(tài)Ag-O系的表面過剩量
通過式(40)和(41),計(jì)算了液態(tài)Ag-O系中的表面過剩量ΓO,Ag和表面偏析因子η隨氧氣壓力和溫度的變化趨勢(shì),結(jié)果如圖7和8所示。
圖7表面過剩量隨溫度和氧氣壓力變化的關(guān)系
圖8表面偏析因子隨溫度和氧氣壓力變化的關(guān)系
由圖7可知,當(dāng)溫度低于1500 K時(shí),ΓO,Ag隨氧氣壓力升高顯著增加;當(dāng)溫度高于1500 K時(shí),由于液態(tài)Ag-O系中的氧溶解度顯著降低,ΓO,Ag隨氧氣壓力的增加,其增加幅度減小。觀察圖8可知,η隨著溫度和氧分壓的升高而呈現(xiàn)下降趨勢(shì)。這是因?yàn)槭?27)中的表面偏析平衡系數(shù)KII與溫度呈負(fù)相關(guān),當(dāng)溫度升高時(shí)KII減小,導(dǎo)致表面氧濃度降低。此外,在較低的氧分壓條件下,O原子傾向富集于表面;當(dāng)氧分壓升高時(shí),更多的O原子溶入液態(tài)Ag-O系中,引起η減小。
4、結(jié)論
本工作從熱力學(xué)角度出發(fā),通過表面能與內(nèi)聚能的比例關(guān)系,研究了液態(tài)Ag的表面張力和表面過剩熵。在此基礎(chǔ)上,通過理想溶體近似模型簡(jiǎn)化Butler方程,研究了液態(tài)Ag-O系表面張力和表面過剩量關(guān)于氧氣壓力和溫度的變化趨勢(shì),得到以下結(jié)論:
(1)在整個(gè)溫度范圍內(nèi),液態(tài)Ag表面張力隨著溫度升高呈現(xiàn)近似線性下降的趨勢(shì)。表面過剩熵也隨著溫度升高逐漸減小,這表明液態(tài)Ag表面總是保持有序結(jié)構(gòu)。
(2)計(jì)算了Ag-O系的液相線,并與實(shí)驗(yàn)相圖非常吻合,證明了Ag-O系具有理想溶體性質(zhì)。基于此,修正了液態(tài)Ag-O系表面張力關(guān)于氧氣壓力和溫度的預(yù)測(cè)模型,并將溫度為1350 K時(shí)的計(jì)算結(jié)果與文獻(xiàn)數(shù)據(jù)進(jìn)行比較,結(jié)果表明,預(yù)測(cè)值與實(shí)驗(yàn)值具有較好的一致性。當(dāng)氧氣壓力低于10 kPa時(shí),液態(tài)Ag-O系的表面張力與溫度呈負(fù)相關(guān);而當(dāng)氧氣壓力高于10 kPa時(shí),隨著溫度升高,表面張力呈現(xiàn)先增大后減小的趨勢(shì)。
(3)當(dāng)升高氧氣壓力,或降低體系溫度時(shí),表面過剩量逐漸增加。表面偏析因子則與氧氣壓力和溫度均呈負(fù)相關(guān),當(dāng)降低氧氣壓力或溫度時(shí),O原子傾向富集于體系表面。
液態(tài)Ag-O系表面張力和表面過剩量計(jì)算、氧氣壓力和溫度的預(yù)測(cè)模型——摘要 、簡(jiǎn)介
液態(tài)Ag-O系表面張力和表面過剩量計(jì)算、氧氣壓力和溫度的預(yù)測(cè)模型——模型
液態(tài)Ag-O系表面張力和表面過剩量計(jì)算、氧氣壓力和溫度的預(yù)測(cè)模型——結(jié)果與討論





